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Abstract
In this study a step stress partially accelerdifedtest (SSPALT) using type-l censoring is oh&d for
Rayleigh distribution. This distribution has beesurid appropriate for high reliability componentsad¥mum
Likelihood (ML) Estimation is used to estimate tharameters of SSPALT model. Confidence intervatstlie
model parameters are constructed. An iterativequiore is also used to obtain the estimators nualbric

Keywords : Acceleration factor; Step stress; Fisher Infdiaramatrix; generalized asymptotic variance; Optim
test plan; Maximum likelihood estimation; Confidernintervals.

I ntroduction

Due to the rapid advances in technology,
development of highly sophisticated products, is&en
global  competition, and increasing customer
expectations, the reliability of the products icant era
have become very high. As in life testing experitaghe
failure time data is used to obtain the produce lif
characteristics under normal operating conditions,
therefore, such life data has become very diffidolt
obtain as a result of the great reliability of tgda
products and hence under normal operating condition
as products usually last long, the correspondifegtdists

become very time consuming and expensive. In these

cases, accelerated tests can be applied to redhece t
experimental time and hence the cost. Accelerdfed |
testing (ALT) is a quick way to obtain informatiaiout
the life distribution of a material, component agoguct.
In ALT items are subjected to conditions that areren
severe than the normal ones, which yields shoiter |
but, hopefully, do not change the failure mechasism
Failure information collected under this severet tes
stresses can be extrapolated to obtain an estiofate
lifetime under use condition based on some lifesstr
relationship. Such a way of testing reduces tintecost.
ALTs, generally deal with three types of stress
loadings: constant stress, step stress and progress
stress. Constant stress is the most common typaess
loading, in which every item is tested under a tamis
level of the stress, which is higher than normaeleln
this kind of testing, we may have several stresslée
which are applied for different groups of the tdstems.
This means that every item is subjected to onlysiress
level until the item fails or the test is stopped bther

reasons. If the stress level of the test is no leigough,
many of the tested items will not fail during theadable
time and one has to be prepared to handle a lot of
censored data. To avoid this problem, step-stesting
can be applied, in which, all items are first sahge to a
specified constant stress for a specified periodiroé.
Items that do not fail will be subjected to a highevel
of stress for another specified time. The levestoéss is
increased step by step until all items have fadedhe
test stops for other reasons. Progressive-stressnig is
quite like the step stress testing with the diffiexe that
the stress level increases continuously.

Failure data obtained from ALT can be divided
into two categories: complete (all failure data are
available) or censored (some of failure data aresimg).
Complete data consist of the exact failure timetest
units, which means that the failure time of eacimga
unit is observed or known. In many cases whendita
are analyzed, all units in the sample may not fHtiis
type of data is called censored or incomplete daee
for more details, Bagdonavicius and Nikulin (2002),
Meeker and Escobar (1998), Nelson (1980, 1990),rMan
and Singpurwalla (1983).

The fundamental assumption in ALT is that the
mathematical model relating the lifetime of thetuamd
the stress should be known or can be assumed.nie so
cases, this kind of life-stress relationships arekmown
and also cannot be assumed, i.e. ALT data cannot be
extrapolated to use condition. So, in such casasiafly
accelerated life tests (PALT) is a more suitabtt te be
performed for which tested units are subjected dthb
normal and accelerated conditions. According toshiel
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(1990), the stress can be applied in various wayse
way to accelerate failure is step-stress, whicheiases
the stress applied to test product in a specifisdrete
sequence. Step-stress partially accelerated Igfe (&S-
PALT) is used to get quick information for the tifae
of product with high reliability; specially, wherhe
mathematical model related to test conditions ofme
lifetime of the product is unknown and cannot be
assumed.

For an overview of SS-PALT, there is amount
of literature on designing SS- PALT. Goel (1971)
considered the estimation problem of the accelarati
factor using both maximum likelihood and Bayesian
methods for items having exponential and uniform
distributions. DeGroot and Goel (1979) estimated th

parameters of the exponential distribution and
acceleration factor in SS-PALT wusing Bayesian
approach, with different loss functions. Also,

Bhattacharyya and Soejoeti (1989) estimated the
parameters of the Weibull distribution and accdiena
factor using maximum likelihood method. Bai and
Chung (1992) estimated the scale parameter and
acceleration factor for exponential distributionden
type | censored sample using maximum likelihood
method.

Attia et al. (1996) considered the maximum
likelihood method for estimating the acceleratiactbr
and the parameters of Weibull distribution in SSEFA
under type | censoring. Abdel-Ghaly et al. (199%¢di
Bayesian approach for estimating the parameters of
Weibull distribution with known shape parametereyh
studied the estimation problem in SS-PALT undethbot
type | and type Il censored data. Abdel-Ghani (3998
considered the estimation problem of the parametérs
Weibull distribution and the acceleration factor fimth
SS-PALT and constant-stress PALT. Maximum
likelihood and Bayesian methods under type | ape ty
censored data are applied in this study. Abdel-Glal
al. (2002) studied the estimation problem of the
acceleration factor and the parameters of Weibull
distribution in SS-PALT using maximum likelihood
method using both type | and type Il censoring.

In this study the maximum likelihood method hasrbee
used for estimating the acceleration factor andntbeel
parameters. The lifetime distribution of the tdsini is
assumed to be Rayleigh distribution and the test is
conducted for SS-PALT under type | censored sample.
The performance of the obtained estimators is
investigated in terms of relative absolute bias,ame
square error and the relative error. Moreover, 9686
and 99% confidence intervals of the estimators Heaen
obtained.
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The Model

The lifetimes of the test items are assumed to
follow a Rayleigh distribution. The probability dgty
function of the Rayleigh distribution is given by

t t2
f)=—exp ——|,0<t <o, >0
O F{ 202J
1)

where, @ is the scale parameter.
And the cumulative distribution function is given b

t2
F(t)=1-exg ——— |,0<st<w, >0
o ;{ Zezj
2

The reliability function of the Rayleigh distribati takes
the form

t2
R(t) =exp —— |, 3)
26°
and the corresponding hazard rate is given by
t
h(t) = 52

The Rayleigh distribution has played an important
role in modeling the lifetime of random phenomeha.
arises in many areas of applications, includingabdity,
life testing and survival analysis. Weibull distrtlon
converts into Rayleigh distribution when shape
parameter takes the value 2. Rayleigh distributi®n
frequently used to model wave heights in oceandyrap
and in communication theory to describe hourly raedi
and instantaneous peak power of received radiaksgn
It has been used to model the frequency of diffenénd
speeds over a year and a wind turbine sites. Tstardie
from one individual to its nearest neighbor whee th
spatial pattern is generated by Poisson distributio
follows a Rayleigh distribution. In communication
theory, Rayleigh distribution is used to model wrad
signals that reach a receiver by multiple paths.
Depending on the density of scatter, the signal wil
display different fading characteristics. Rayleigh
distribution is used to model dense scatter.

While conducting a step-stress PALT, firstly, dll o
N units are tested under normal use condition, atiakif
unit does not fail for a pre-fixed time, then it is run at
accelerated condition until failure. The effect thiis
change from normal to accelerated condition is to
multiply the remaining lifetime of the item by theverse

of the acceleration factgf, say ,B_l. Acceleration

factor is taken to be the ratio of the hazard rate
accelerated condition to that at normal use cooliti
generally >1. Here, in this case, moving from lower
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stress level to the higher stress level will shottee life

of the test item. Thus the total lifetime of thattéem,
denoted by , passes through two stages, first through
the normal use conditions and the second through th
accelerated conditions. Interested readers may go
through Ismail (2006) and Abd- Elfattah et al. (2R0

The total lifetime of an item in SSPALT is given by

T ifT<r
Y= 4 _ ,

T+B(T-1) if T>1
where, T is the lifetime of an item at use condition, is

the stress change time ag@ is the acceleration factor.

This model is called the tampered random variable
(TRV) model. It was proposed by DeGroot and Goel
(1979).

Assume that the lifetime of the test item follows a
Rayleigh distribution with€ as a scale parameter. Then,
the pdf of total lifetimeY of an item is given by

(4)

0 if y<O
f(y) =4 fi(y) if O<y<r

fo(y) if y>r1
(5)

2
_y y .

Where, f =Zexp-——=—1|, 6>0, is the

1(Y) o2 F{ ZHZJ

equivalent formto (1), and

_Blr+p(y-1)] [r+B(y-1)°
f2(y) —TGXF{—TJ,

6>0, B>1, is obtained by the transformation variable
technique using (1) and (4).

Maximum Likelihood Estimation

The maximum likelihood estimation is one of the
most important and widely used methods in stafistic
is commonly used for the most theoretical model and
kinds of censored data. The idea behind the maximum
likelihood parameter estimation is to determine the
estimates of the parameter that maximizes theiliGet
of the sample data. Also the MLEs have the desrabl
properties of being consistent and asymptoticatiymal
for large samples.
Point Estimation

In type | censoring the test terminates when the

censoring time) is reached. The observed values of the

total lifetime Y are
YO << Yn) ST<Yng+n) << Yng+ng) <77,

ISSN: 2277-9655
Impact Factor: 1.852

where n, and n, are the number of items failed at
normal conditons and accelerated conditions
respectively. Letd;; and O, be the indicator functions
(Indicator Function is a function defined on a s&
that indicates membership of an element in a sulfset
of S, having the value 1 for all elements éf and the
value 0O for all elements o not in A.), such that

5 1 Y, ST =12 0
= i=12...,
0 otherwise
and
1 T<Yy,<n ,
Oy = =12,...,n
2 {O otherwise 1=

The lifetimes y;,...,y,0f n items are independent

and identically distributed random variables, ahent
their likelihood function is given by

L(y:6.8) =[] [a)]® <[t ()] x[Rep] 2
=1

(6)

By substituting the respective values we get

n _ ‘2 % - . 2 %
o= -] B0 sty

[ex{_[rwm-n]zﬂ@"”
267

Where,&; =1-J; and dy =1- 03, .

It is usually easier to maximize the natural
logarithm of the likelihood function rather thaneth
likelihood function itself. Therefore, the logamthof the
likelihood function is

n 2
logL =)’ {Jﬂ {Iog Yy - 2Iog¢9—#}

i=1
[7+ By, -1
267

+ 0y {logﬂ +log[r + (y; —1)] - 2log6 -

= = ([7+B0n-0)]°
~ 0y 0y {TJ]

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3308-3313]



[Saxena, 2(11): November, 2013]

n n Jl.iy'z
IogL:—Znolog€+z 9y logy; —z 292' +

i=1 i=1

NalogB+y" 3y loglr + Ay, ~7)]
i=1

- s [T+ Bl D) 7+ B -1)°
) 52T_(n_no)[%]

n
D030, =n-n, =N, andny =n, +n,.
i=1

Maximum likelihood estimators ot/ andf are
solutions to the system of equations obtained kinge
the first partial derivatives of the total log llkeod be
zero with respect t&@ andf , respectively. Therefore,
the system of equations is as follows:

n

ologk _ 2 , 3 @TZ,ZJan: By 7[”'3(;@ =il +(n—no)[7[r+ﬁ(,7_r)]2]
=

26 6 = e
(7)

dlogl _na  xv %i(Vi=0) _ 1<, v

o5 -fé Ty 02§52|[T+ﬁ(y| DIy - 1)

L (n=no)(7 —7)[7 + Bl ~7)]
92

(®)

Since the closed form solution to nonlinear equnetity)
and (8) are very hard to obtain. An iterative pchae is
applied to solve these equations numerically. Nawto
Raphson method is applied for simultaneously sglvin
the nonlinear equations to obtathand £ .

The asymptotic variance-covariance matrix Bf

and @ is obtained by numerically inverting the Fisher-
information matrix composed of the negative second
order derivatives of the natural logarithm of the
likelihood function evaluated at the ML estimat&se
asymptotic Fisher-information matrix can be writtes

_d%InL _d%InL

_| 06? 0006
_0%InL _9%InL
06 032

The elements of the above information matrix can
be expressed by the following equations:

2 n n
=T Y aE Y, dalr+ Ay T (=)l A )P
i=1 i=1
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a%logL _ _n, Z”:

Oy (y; - 1)? 1< 5 2 2}
-y QWIS S, (v —1)% + (n-n)(7 - 1)
B> B G By -0 6 Zl ? °

d%logL _ 2 | ¢
0Bs 6

i=1

. o :023{21 Sylr+ By, -0y, 1) +(n_no)[f+,3(/7_f)](/7_f)}
Interval Estimates
If L, =L.(Yq,..,Yn)and
U, =U.(yy,...,y,) are functions of the sample
datay,,...,Y,, then a confidence
population parametef is given by
plLe<e<U.]=y 9

where, L.and U are the lower and upper confidence
limits which enclose€ with probabilityy . The interval

[L;,U,] is called a two sidedlOOy% confidence
interval for& .

For large sample size, the MLEs, under appropriate
regularity conditions, are consistent and asymgpdaditi
normally distributed.

Therefore, the two sided approximatd00y%

confidence limits for the MLE £of a population
parameter€ can be constructed, such that

interval for a

A

p-z<f<z=y o)
a(é)
where, z is the {&;_y)}standard normal
percentile. Therefore, the two sided approximate

100y % confidence limits for a population parameter
can be obtained such that

ple-zo(&)<E<e+zo(€)] Uy (11)

Then, the two sided approximate confidence limds f
S and @ will be constructed using (11) with confidence

levels 95% and 99%.

Simulation Studies
First a random sample is generated from
Rayleigh distribution for different sample

sizesn =100,200, ...,500. The values of parameters
are chosen to ¢ = 450,430, f= 030 070). The
censoring timer at the normal condition is 2 and
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censoring time of a PALT to g=5. For different
sample sizes the mean squared error (MSE), Random
Absolute Bias (RABias), Relative Error (RE), vakan
and the approximated two sided confidence limits at
95% and 99% level of significance of the estimators
for two sets of parameters are obtained. The data i
Table 1 and Table 2 gives the MSE, RABias, RE and
variance of the estimators for two sets of pararsete
(6= 450, = 030)and (6=430,5=070
respectively. While Table 3 and Table 4 presergstifo
sided approximate confidence limits @6% and 99%
level of significance for the scale parameter ahd t
acceleration factor.

Table 1: Simulation resultsfor 8 = 450, 8 = 030 at
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o)

0.000
4

0.027
5

0.100
0

0.0004

h) NP

0.091
4

0.000
1

0.065
7

0.0914

0.002
0

0.004
0

0.223
6

0.0020

h) NP

0.016
2

0.007
0

0.027
7

0.0152

0.000
2

0.036
0

0.070
7

0.0001

h) >

0.026
6

0.003
9

0.035
5

0.0263

0.000
3

0.038
0

0.006
6

0.0002

Table 3: Confidence Intervalsfor 8 = 450, 8 = 030 at

n=5 n=>5
n Parameter M SE RBias | RE Varianc 95% 99%
s e n Parameters | LCL LCL
ol 2.006 g.ooo 8.017 0.0062 UcL UcL
o | 4 0,030 [0.022 | 0218 | g 5303 100 q 4.2842| 4.8669 4.3318 4.819
6 1 7 : Vi 0.1689| 0.2244 0.1735 0.219
o 0.105 1 0.000 | 0.073 | ; 455 ) 4.2789| 5.0319 4.3404 4.97(
20 5 6 8 200! 7
0 | 3 3.004 g.ozz 3.085 0.0044 Vi 0.1663| 0.2447 0.1727 0.238
- 0,015 [0.001 | 0.028 | g o1c, 200 q 4.0079| 5.1931 4.1047 5.096
30 | 8 2 4 0 : Vi 0.1115| 0.2869 0.1259 0.272
O | p 0.002 1 0.016 | 0.061 | ; 555, F; 4.3263| 4.8094 4.3656 4.761
4 3 2 400| -

o | (;.013 2.001 8.026 0.0131 '/f) 0.1876| 0.2268 0.1908 0.223
o | 550 10011 1 0.180 ) 4.3003| 4.9361 4.3520 4.884
0.0208 500|

9 0 7 B 0.1647| 0.2201 0.1191 0.264
o | 6 8.015 2.003 2.027 0.0148
0 [; 0,002 | 0.004 | 0.086 | o gorg Table4: Confidence Intervalsfor 8 = 430, = 070 at
8 8 1 : n=5
95% 99%
Table 2: Simulation resultsfor = 430, 8 = 070 at N | Parameters | LCL LCL
n=5 UCL UCL
—— Varianc 0 4.2498| 4.5584 4.2749 4.533
: 100| -
" ls MSE | RBias | RE ¢ B 0.4411| 11239 0.4968 1.061
- 0.022 | 0.005 | 0.032 % 3.7659| 5.0391 3.8698 4.935
10 | ! 3 8 noe 200 q 0.6882| 0.9482 0.7094 0.926
0 | 3 0.000 [ 0.016 | 0.070 | ; 505 /f’ : : : :
2 > 7 0 3.6299| 5.1581 4.1918 4.594
20 | ~ 0.039 [ 0.012 [ 0.043 | ; gaeo 300| = 7
0 9 0 4 : B 0.6951| 0.8789 0.7101 0.863
400 g 4.1749| 4.6237 4.2116 4.587
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B 0.5261| 1.0915 0.5728 1.0453

0 4.1472| 4.6240 4.186] 4.5851
500| -

Vi 0.7000| 0.9075 0.7170 0.8906

Discussion and Conclusion
From above tables it is concluded that for thet firs

set of

parametefg = 450, 5= 030), the ML

estimates have good statistical properties tharsecend

set of parameterdd = 430, = 070 for all sample
sizes. Also as the acceleration factor increases th
estimates have smaller MSE and RE. As the sampde si
increases the RABias and MSEs of the estimates of

parameters decreases. This

indicates that the ML

estimates provide asymptotically normally distrit

and con

sistent estimators for the scale paramatethe

acceleration factor. When sample size increases, th
interval of the estimators decreases. It is ald@ed that

the intervals of the estimatorsjat= 095is smaller than

the interval of estimators jt= 099.

T
the ML

he results of this simulation study suggests that
estimates approximate the true values of the

parameters well with good statistical propertied an
hence it may be say that SSPALT is a suitable model
which enables to save time and money considerably
without using a high stress to all test units.
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