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Abstract 

  In this study a step stress partially accelerated life test (SSPALT) using type-I censoring is obtained for 
Rayleigh distribution. This distribution has been found appropriate for high reliability components. Maximum 
Likelihood (ML) Estimation is used to estimate the parameters of SSPALT model. Confidence intervals for the 
model parameters are constructed. An iterative procedure is also used to obtain the estimators numerically.  
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Introduction
 Due to the rapid advances in technology, 
development of highly sophisticated products, intense 
global competition, and increasing customer 
expectations, the reliability of the products in recent era 
have become very high. As in life testing experiments the 
failure time data is used to obtain the product life 
characteristics under normal operating conditions, 
therefore, such life data has become very difficult to 
obtain as a result of the great reliability of today’s 
products and hence under normal operating conditions, 
as products usually last long, the corresponding life-tests 
become very time consuming and expensive. In these 
cases, accelerated tests can be applied to reduce the 
experimental time and hence the cost. Accelerated life 
testing (ALT) is a quick way to obtain information about 
the life distribution of a material, component or product. 
In ALT items are subjected to conditions that are more 
severe than the normal ones, which yields shorter life 
but, hopefully, do not change the failure mechanisms. 
Failure information collected under this severe test 
stresses can be extrapolated to obtain an estimate of 
lifetime under use condition based on some life-stress 
relationship. Such a way of testing reduces time and cost.  
 ALTs, generally deal with three types of stress 
loadings: constant stress, step stress and progressive 
stress. Constant stress is the most common type of stress 
loading, in which every item is tested under a constant 
level of the stress, which is higher than normal level. In 
this kind of testing, we may have several stress levels, 
which are applied for different groups of the tested items. 
This means that every item is subjected to only one stress 
level until the item fails or the test is stopped for other 

reasons. If the stress level of the test is not high enough, 
many of the tested items will not fail during the available 
time and one has to be prepared to handle a lot of 
censored data. To avoid this problem, step-stress testing 
can be applied, in which, all items are first subjected to a 
specified constant stress for a specified period of time. 
Items that do not fail will be subjected to a higher level 
of stress for another specified time. The level of stress is 
increased step by step until all items have failed or the 
test stops for other reasons. Progressive-stress loading is 
quite like the step stress testing with the difference that 
the stress level increases continuously. 
 Failure data obtained from ALT can be divided 
into two categories: complete (all failure data are 
available) or censored (some of failure data are missing). 
Complete data consist of the exact failure time of test 
units, which means that the failure time of each sample 
unit is observed or known. In many cases when life data 
are analyzed, all units in the sample may not fail. This 
type of data is called censored or incomplete data. See 
for more details, Bagdonavicius and Nikulin (2002), 
Meeker and Escobar (1998), Nelson (1980, 1990), Mann 
and Singpurwalla (1983). 
 The fundamental assumption in ALT is that the 
mathematical model relating the lifetime of the unit and 
the stress should be known or can be assumed. In some 
cases, this kind of life-stress relationships are not known 
and also cannot be assumed, i.e. ALT data cannot be 
extrapolated to use condition. So, in such cases, partially 
accelerated life tests (PALT) is a more suitable test to be 
performed for which tested units are subjected to both 
normal and accelerated conditions. According to Nelson 
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(1990), the stress can be applied in various ways. One 
way to accelerate failure is step-stress, which increases 
the stress applied to test product in a specified discrete 
sequence. Step-stress partially accelerated life test (SS-
PALT) is used to get quick information for the lifetime 
of product with high reliability; specially, when the 
mathematical model related to test conditions of mean 
lifetime of the product is unknown and cannot be 
assumed.  
 For an overview of SS-PALT, there is amount 
of literature on designing SS- PALT. Goel (1971) 
considered the estimation problem of the acceleration 
factor using both maximum likelihood and Bayesian 
methods for items having exponential and uniform 
distributions. DeGroot and Goel (1979) estimated the 
parameters of the exponential distribution and 
acceleration factor in SS-PALT using Bayesian 
approach, with different loss functions. Also, 
Bhattacharyya and Soejoeti (1989) estimated the 
parameters of the Weibull distribution and acceleration 
factor using maximum likelihood method. Bai and 
Chung (1992) estimated the scale parameter and 
acceleration factor for exponential distribution under 
type I censored sample using maximum likelihood 
method. 
 Attia et al. (1996) considered the maximum 
likelihood method for estimating the acceleration factor 
and the parameters of Weibull distribution in SS-PALT 
under type I censoring. Abdel-Ghaly et al. (1997) used 
Bayesian approach for estimating the parameters of 
Weibull distribution with known shape parameter. They 
studied the estimation problem in SS-PALT under both 
type I and type II censored data. Abdel-Ghani (1998) 
considered the estimation problem of the parameters of 
Weibull distribution and the acceleration factor for both 
SS-PALT and constant-stress PALT. Maximum 
likelihood and Bayesian methods under type I and type II 
censored data are applied in this study. Abdel-Ghaly et 
al. (2002) studied the estimation problem of the 
acceleration factor and the parameters of Weibull 
distribution in SS-PALT using maximum likelihood 
method using both type I and type II censoring. 
In this study the maximum likelihood method has been 
used for estimating the acceleration factor and the model 
parameters. The lifetime distribution of the test item is 
assumed to be Rayleigh distribution and the test is 
conducted for SS-PALT under type I censored sample. 
The performance of the obtained estimators is 
investigated in terms of relative absolute bias, mean 
square error and the relative error. Moreover, the 95% 
and 99% confidence intervals of the estimators have been 
obtained. 
 
 

The Model 
The lifetimes of the test items are assumed to 

follow a Rayleigh distribution. The probability density 
function of the Rayleigh distribution is given by 
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where, θ  is the scale parameter. 
And the cumulative distribution function is given by 
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The reliability function of the Rayleigh distribution takes 
the form 
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and the corresponding hazard rate is given by 
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The Rayleigh distribution has played an important 
role in modeling the lifetime of random phenomena. It 
arises in many areas of applications, including reliability, 
life testing and survival analysis. Weibull distribution 
converts into Rayleigh distribution when shape 
parameter takes the value 2. Rayleigh distribution is 
frequently used to model wave heights in oceanography, 
and in communication theory to describe hourly median 
and instantaneous peak power of received radio signals. 
It has been used to model the frequency of different wind 
speeds over a year and a wind turbine sites. The distance 
from one individual to its nearest neighbor when the 
spatial pattern is generated by Poisson distribution 
follows a Rayleigh distribution. In communication 
theory, Rayleigh distribution is used to model scattered 
signals that reach a receiver by multiple paths. 
Depending on the density of scatter, the signal will 
display different fading characteristics. Rayleigh 
distribution is used to model dense scatter. 

While conducting a step-stress PALT, firstly, all of 
n  units are tested under normal use condition, and if the 
unit does not fail for a pre-fixed time τ , then it is run at 
accelerated condition until failure. The effect of this 
change from normal to accelerated condition is to 
multiply the remaining lifetime of the item by the inverse 

of the acceleration factorβ , say 1−β .  Acceleration 

factor is taken to be the ratio of the hazard rate at 
accelerated condition to that at normal use condition,               
generally 1>β . Here, in this case, moving from lower 
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stress level to the higher stress level will shorten the life 
of the test item. Thus the total lifetime of the test item, 
denoted byY , passes through two stages, first through 
the normal use conditions and the second through the 
accelerated conditions. Interested readers may go 
through Ismail (2006) and Abd- Elfattah et al. (2008). 
The total lifetime of an item in SSPALT is given by 
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where, T  is the lifetime of an item at use condition, τ  is 
the stress change time and β  is the acceleration factor. 

This model is called the tampered random variable 
(TRV) model. It was proposed by DeGroot and Goel 
(1979). 
Assume that the lifetime of the test item follows a 
Rayleigh distribution with θ  as a scale parameter. Then, 
the pdf of total lifetime Y of an item is given by 
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0>θ , 1>β , is obtained by the transformation variable 

technique using (1) and (4). 
 
Maximum Likelihood Estimation 

The maximum likelihood estimation is one of the 
most important and widely used methods in statistics. It 
is commonly used for the most theoretical model and 
kinds of censored data. The idea behind the maximum 
likelihood parameter estimation is to determine the 
estimates of the parameter that maximizes the likelihood 
of the sample data. Also the MLEs have the desirable 
properties of being consistent and asymptotically normal 
for large samples. 
Point Estimation 

In type I censoring the test terminates when the 
censoring time η  is reached. The observed values of the 

total lifetime Y  are 
ητ ≤<<<≤<< ++ )()1()()1( ......

anununun yyyy ,  

where un  and an  are the number of items failed at 

normal conditions and accelerated conditions 
respectively. Let i1δ  and i2δ be the indicator functions 

(Indicator Function is a function defined on a set S  
that indicates membership of an element in a subset A  
of S , having the value 1 for all elements of A  and the 
value 0 for all elements of S not in A .), such that  
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The lifetimes nyy ,...,1 of n  items are independent 

and identically distributed random variables, and then 
their likelihood function is given by 
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By substituting the respective values we get 
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Where, ii 11 1 δδ −=  and ii 22 1 δδ −= . 

It is usually easier to maximize the natural 
logarithm of the likelihood function rather than the 
likelihood function itself. Therefore, the logarithm of the 
likelihood function is  



















−−=∑
=

2

2

1
1 2

log2loglog
θ

θδ i
ii

n

i

y
yL

 











 −+

−−−+++
2

2

2
2

)]([
log2)](log[log

θ
τβτθτβτβδ i

ii
y

y

   

 


















 −+−
2

2

21
2

)]([

θ
τηβτδδ ii  



[Saxena, 2(11): November, 2013]   ISSN: 2277-9655 
   Impact Factor: 1.852
   

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology 
[3308-3313] 

 

)](log[log
2

loglog2log 2
1

2

2
1

1
1

1
0 τβτδβ

θ
δδθ −+++−+−= ∑∑∑

===
ii

n

i
a

ii
n

i
ii

n

i

yn
y

ynL

 













 −+−−
−+

−∑
=

2

2

02

2

2
1 2

)]([
)(

2

)]([

θ
τηβτ

θ
τβτδ nn

yi
i

n

i

 

aui

n

i
i nnn −−=∑

=
2

1
1 δδ  and au nnn +=0 . 

 
Maximum likelihood estimators of θ  andβ  are 

solutions to the system of equations obtained by letting 
the first partial derivatives of the total log likelihood be 
zero with respect to θ  andβ  , respectively. Therefore, 

the system of equations is as follows: 
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Since the closed form solution to nonlinear equations (7) 
and (8) are very hard to obtain. An iterative procedure is 
applied to solve these equations numerically. Newton-
Raphson method is applied for simultaneously solving 
the nonlinear equations to obtain θ  and β .  

 
The asymptotic variance-covariance matrix of β  

and θ  is obtained by numerically inverting the Fisher-
information matrix composed of the negative second 
order derivatives of the natural logarithm of the 
likelihood function evaluated at the ML estimates. The 
asymptotic Fisher-information matrix can be written as: 



















∂
∂−

∂∂
∂−

∂∂
∂−

∂
∂−

=

2

22

2

2

2

lnln

lnln

ββθ

θβθ
LL

LL

F  

The elements of the above information matrix can 
be expressed by the following equations: 
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Interval Estimates 

If ),,( 1 nyyLL Kεε = and 

),,( 1 nyyUU Kεε =  are functions of the sample 

data nyy ,,1 K , then a confidence interval for a 

population parameter ε  is given by 
γε εε =≤≤ ][ ULp     (9) 

where, εL and εU are the lower and upper confidence 

limits which enclose ε  with probabilityγ . The interval 

],[ εε UL  is called a two sided %100γ  confidence 

interval forε . 
For large sample size, the MLEs, under appropriate 
regularity conditions, are consistent and asymptotically 
normally distributed. 
Therefore, the two sided approximate %100γ  

confidence limits for the MLE ε̂ of a population 
parameter ε can be constructed, such that 

γ
εσ
εε =≤−≤− ]
)ˆ(

ˆ
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where, z  is the 






 −
2

)1(100 γ
standard normal 

percentile. Therefore, the two sided approximate 
%100γ  confidence limits for a population parameter ε  

can be obtained such that 
γεσεεεσε ≅+≤≤− )]ˆ(ˆ)ˆ([ zzp   (11) 

Then, the two sided approximate confidence limits for 
β  and θ  will be constructed using (11) with confidence 

levels %95  and %99 . 
 
Simulation Studies  

First a random sample is generated from 
Rayleigh distribution for different sample 
sizes 500...,,200,100=n . The values of parameters 

are chosen to be )70.0,30.0,30.4,50.4( == βθ . The 

censoring time τ  at the normal condition is 2 and 
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censoring time of a PALT to be 5=η . For different 

sample sizes the mean squared error (MSE), Random 
Absolute Bias (RABias), Relative Error (RE), variance 
and the approximated two sided confidence limits at 

%95  and %99  level of significance of the estimators 
for two sets of parameters are obtained. The data in 
Table 1 and Table 2 gives the MSE, RABias, RE and 
variance of the estimators for two sets of parameters 

)30.0,50.4( == βθ and )70.0,30.4( == βθ  

respectively. While Table 3 and Table 4 presents the two 
sided approximate confidence limits at %95  and %99  
level of significance for the scale parameter and the 
acceleration factor. 
 

Table 1: Simulation results for 30.0,50.4 == βθ  at 

5=η  

n  Parameter
s 

MSE RBias RE 
Varianc
e 

10
0 

θ̂  

β̂  

0.006
2 

0.000
9 

0.017
9 

0.0062 

0.030
6 

0.022
1 

0.218
7 

0.0303 

20
0 

θ̂  

β̂  

0.105
5 

0.000
6 

0.073
8 

0.1055 

0.004
7 

0.022
8 

0.085
7 

0.0044 

30
0 

θ̂  

β̂  

0.015
2 

0.001
4 

0.028
0 

0.0152 

0.002
4 

0.016
3 

0.061
2 

0.0022 

40
0 

θ̂  

β̂  

0.013
1 

0.001
6 

0.026
0 

0.0131 

0.020
9 

0.011
0 

0.180
7 

0.0208 

50
0 

θ̂  

β̂  

0.015
0 

0.003
3 

0.027
8 

0.0148 

0.002
8 

0.004
8 

0.066
1 

0.0028 

 
Table 2: Simulation results for 70.0,30.4 == βθ  at 

5=η  

n  Parameter
s 

MSE RBias RE 
Varianc
e 

10
0 

θ̂  

β̂  

0.022
7 

0.005
3 

0.032
8 

0.0221 

0.000
2 

0.016
5 

0.070
7 

0.0002 

20
0 θ̂  

0.039
9 

0.012
0 

0.043
4 

0.0369 

β̂  0.000
4 

0.027
5 

0.100
0 

0.0004 

30
0 

θ̂  

β̂  

0.091
4 

0.000
1 

0.065
7 

0.0914 

0.002
0 

0.004
0 

0.223
6 

0.0020 

40
0 

θ̂  

β̂  

0.016
2 

0.007
0 

0.027
7 

0.0152 

0.000
2 

0.036
0 

0.070
7 

0.0001 

50
0 

θ̂  

β̂  

0.026
6 

0.003
9 

0.035
5 

0.0263 

0.000
3 

0.038
0 

0.006
6 

0.0002 

 
Table 3: Confidence Intervals for 30.0,50.4 == βθ  at 

5=η  

n  Parameters 
95% 99% 
LCL                  
UCL 

LCL                  
UCL 

100 
θ̂  

β̂  

4.2842 4.8669 4.3318 4.8194 

0.1689 0.2244 0.1735 0.2199 

200 
θ̂  

β̂  

4.2789 5.0319 4.3404 4.9704 

0.1663 0.2447 0.1727 0.2383 

300 
θ̂  

β̂  

4.0079 5.1931 4.1047 5.0963 

0.1115 0.2869 0.1259 0.2725 

400 
θ̂  

β̂  

4.3263 4.8094 4.3656 4.7617 

0.1876 0.2268 0.1908 0.2236 

500 
θ̂  

β̂  

4.3003 4.9361 4.3522 4.8842 

0.1647 0.2201 0.1191 0.2657 

 
Table 4: Confidence Intervals for 70.0,30.4 == βθ  at 

5=η  

n  Parameters 
95% 99% 
LCL                   
UCL 

LCL                  
UCL 

100 
θ̂  

β̂  

4.2498 4.5584 4.2749 4.5332 

0.4411 1.1235 0.4968 1.0678 

200 
θ̂  

β̂  

3.7659 5.0391 3.8698 4.9352 

0.6882 0.9482 0.7094 0.9269 

300 
θ̂  

β̂  

3.6299 5.1581 4.1918 4.5962 

0.6951 0.8789 0.7101 0.8639 

400 θ̂  4.1749 4.6237 4.2116 4.5870 
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β̂  0.5261 1.0915 0.5723 1.0453 

500 
θ̂  

β̂  

4.1472 4.6240 4.1861 4.5851 

0.7000 0.9075 0.7170 0.8906 

 
Discussion and Conclusion 

From above tables it is concluded that for the first 
set of parameters )30.0,50.4( == βθ , the ML 

estimates have good statistical properties than the second 
set of parameters )70.0,30.4( == βθ for all sample 

sizes. Also as the acceleration factor increases the 
estimates have smaller MSE and RE. As the sample size 
increases the RABias and MSEs of the estimates of 
parameters decreases. This indicates that the ML 
estimates provide asymptotically normally distributed 
and consistent estimators for the scale parameter and the 
acceleration factor. When sample size increases, the 
interval of the estimators decreases. It is also noticed that 
the intervals of the estimators at 95.0=γ is smaller than 

the interval of estimators at 99.0=γ . 

The results of this simulation study suggests that 
the ML estimates approximate the true values of the 
parameters well with good statistical properties and 
hence it may be say that SSPALT is a suitable model 
which enables to save time and money considerably 
without using a high stress to all test units.   
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